Will Satterthwaite (NOAA SWFSC) and Ole Shelton (NOAA NWFSC), will.satterthwaite@noaa.gov \& ole.shelton@noaa.gov

Introduction \& Methods

- Chinook salmon stocks from different rivers partially overlap in the ocean, where they experience mixed-stock fisheries. Distributions and how they change are incompletely understood, but are key to successful fisheries management.
- We developed a Bayesian state-space model of local abundance for each stock, accounting for initial cohort size, natural mortality, harvest, and distribution as a function o SST.
- Fit retrospectively to 40 years of fishery-dependent collection of tagged Chinook salmon.
- Predicted how each stock would redistribute under SST predictions for 2030-2090 from Max Planck Institute Earth System Model RCP45 scenario.
- Looked at ocean area-specific abundances summed across stocks to explore shifts in aggregate salmon abundance

Aggregate Response (2050 prediction)

Stock-Specific Responses

Conclusions and Implications

- A warmer ocean shifts salmon distributions, but it is not a simple poleward displacement.
- This can create winners and losers in both future fishing opportunity and ecosystem services provided by a shifting prey base.
- Stocks vary in their relationships with temperature, and this leads to divergent distributional responses to a warming climate
- Species-level models of ocean distributions and drivers that ignore among stock variation will lead to errant predictions.
- Weak stock constraints on mixed-stock fisheries may limit ability to take full advantage of movement into areas.
- Changes in productivity of individual stocks (not modeled) will also affect area-specific total abundance and may exacerbate or counteract distributional shifts

[^0]
[^0]: Shelton, A. O., G. H. Sullaway, E. J. Ward, K. A. Somers, V. J. Tuttle, J. T. Watson, and W. H. Satterthwaite. Redistribution of salmon populations in the Northeast Pacific Ocean in response to climate. In press at Fish and Fisheries.

